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ABSTRACT

In our work, we explore different kinds of sketching methods’efficiency and accuracy with some
common randomized numerical linear algebra tasks. It could be seen from our results that sparse
operators and dense operators both perform well while differing a lot when matrices are ill-conditioned.
SRTTs are especially unstable and perform poorly sometimes compared with the other two kinds.
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1 Introduction

Due to the ubiquity of linear algebra in applied mathemat-
ics, dimension reduction and memory saving have been
perpetual topics as there is an ever-increasing demand for
solving larger problems faster. In 1984, it was proven that
projecting onto a random basis approximately preserves
pairwise distances with high probability [8], thereby open-
ing the doors to using randomized techniques.

Sketching – projecting matrices of interest to a lower-
dimensional subspace – forms the backbone of aptly named
sketch-and-solve RLA algorithms, especially useful for
matrix approximation and compression to speed up compu-
tations. It mainly has two steps. First, reduce the problem
to one of a smaller dimension, and secondly, apply the
deterministic algorithm to the reduced problem [12, 10].
The difference between those algorithms is mainly demon-
strated in the first step where different sketching operators
are employed. A large variety of different techniques have
been proposed to construct random sketching operators
both recently and historically[1, 13].

These years, randomized algorithms have gained a lot of
attention within the scientific computation domain as well
as improving machine learning algorithms for their effi-
ciency [15, 6]. In our work, we examine the performances
of those different sketching matrices solving SVD and least
squares, which can be the building blocks for classification
and regression. Our research aims at giving us a glimpse
into how randomized linear algebra could help machine
learning. Specifically, our work focuses on investigat-
ing the accuracy and efficiency of different sketching ma-
trix structures both from the theoretical and experimental
perspectives. Our code is avaliable at https://github.
com/KonstantinZoerner/Math221-Project

2 Sketching Matrices

Here we define the size of the original matrix A as m× n,
and the size of the sketching operator S as k ×m, where
k ≤ m. Sketching matrices are linear maps defined as
(1± ε)ℓ2 embeddings, such that equation 1 is satisfied.

(1− ε)∥Ax∥22 ≤ ∥SAx∥22 ≤ (1 + ε)∥Ax∥22 (1)
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with a certain probability depending on the structure of S,
which represents how much SA deviates from being an
isometry for A. The distortion ε can be explicitly calcu-
lated as follows [11]:

ε = ∥I − (ATA)−1/2(SA)T (SA)(ATA)−1/2∥2 (2)

We introduce several basic types of sketching matrices as
follows.

2.1 Random Orthogonal Matrices

Arguably, one of the simplest sketch matrix types is the
random orthogonal matrix. It is defined by the John-
son–Lindenstrauss lemma [3, 8], which states the follow-
ing:

Lemma 1 For 0 < ε < 1 and any integer n, for k ≥
8ε−2 log n, then for any set X of n vectors in Rm, there
is a random orthogonal matrix scaled by

√
m/k, S, such

that for all xi ∈ X ,(1−ε)||xi−xj ||22 ≤ ||S(xi−xj)||22 ≤
(1 + ε)||xi − xj ||22 for all 1 ≤ i, j ≤ n, i ̸= j with proba-
bility greater than or equal to 1/n.

The random orthogonal matrix defined by the Johnson-
Lindenstrauss lemma is impractical due to the fact that the
embedding dimension is proportional to ε−2 [12], making
it difficult to realize the dimension-reducing capabilities
of RLA.

2.2 Dense sketching operators

Dense sketching operators are matrix operators with entry-
wise i.i.d. entries drawn from particular distributions. We
introduce three kinds of operators for this survey, and their
introduction could be checked in the supplementary mate-
rials.

Universality principles in high-dimensional probability
[14] guarantee that these sketching operators are practi-
cally equivalent. 2

Because it may take a prohibitively large amount of time
conducting matrix multiplication (O(kmn) time) involved
in sketching, the intended use case for dense sketching
operators is mainly cases where the sketching operator is
far smaller than the data to be sketched(e.g. low-rank ap-
proximation).In any case, for S a k×m sketching operator,
the distortion for a sketched matrix ε ∈ Θ(

√
n/k), where

A is m× n [11].

2.3 Subsampled Random Trigonometric
Transformations

Subsampled random trigonometric transformations
(SRTTs) are structured sketching operators based on
trigonometric transformations like the discrete Fourier

transform, which are used to help embed the target matrix
into a lower-dimensional subspace.

These sketching operators are defined as follows [5]:

S =

√
m

k
RTD (3)

Where D is a m × m diagonal matrix whose diagonal
entries are uniformly distributed around the unit circle in
the complex case (and in the real case, ±1), T is a trigono-
metric transform, and R ∈ Rk×m is a sampling matrix,
selecting k rows from the m×m matrix it multiplies.

Depending on the initial data or other problem parame-
ters, T can be a discrete Fourier transform or the discrete
Hadamard transform.The Hadamard transform functions
as a sort of analogue for the Fourier transform for real
data, having a distortion ε ∈ Θ(

√
(n log n)/d) [11]. In

practice, the sketching operator can be applied to each col-
umn vector x of the initial matrix A, thereby reducing the
sketching operation to be of order at most O(mk logm).

For a positive constant C and for k ⪆ C(d+ logm) log d,
then with high probability, for an d-dimensional subspace,
the SRFT (subsampled random Fourier transform) matrix
S is a subspace embedding with distortion 1

2 [16].

2.4 Sparse sketching operators

Sparse sketching operators are usually constructed by in-
dependently generating the rows or columns of a sketching
operator such that the final S is sparse. There exists another
type of sparse sketching operator – the i.i.d. sparse sketch-
ing operator – constructed by randomly setting many of a
dense sketching operator’s entries to 0. However, because
of their (comparatively) more random structure, their theo-
retical guarantees are not as robust as the aforementioned
row-by-row or column-by-column sketching operator [13].

A major advantage of these operators is the fact that sketch-
ing only takes O(nnz(S)) time because of S’s sparsity
structure, allowing them to be the fastest sketching oper-
ators presented. Nevertheless, this speed comes with a
tradeoff, namely, their distortion, because they inherently
“see” less of the target matrix A than the previous two
sketching architectures.

A prototypical example of a sparse sketching operator is
the Clarkson-Woodruff transform (CWT), also known as
the CountSketch matrix [2]. This matrix is generated by
randomly choosing one element in each of its columns to
be equal to ±1 with equal probability, and setting the rest
to 0. Using this as a sketching matrix, we have that the
distortion ε ∈ Θ(

√
n2/k) [11].More examples could be

checked in the supplementary materials.
2This applies to any such matrix when each of the entries are independent random variables, have mean 0 and variance 1, are

drawn from a symmetric distribution, and have uniformly bounded moments [14].
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2.5 Properties of Sketching Matrices and Sketch
Quality

Now that we have introduced all of the sketching methods
that we will use, we can look back at the two properties
(1) embedding property and (2) distortion introduced in
Section 2 which serve as our criterion for sketch quality. In
practice, it oftentimes suffices to require a relaxed version
of the embedding property (1), which requires a sketching
matrix preserves relative norms [13], i.e.

∥Su∥2
∥Su∥2

≈ ∥u∥2
∥v∥2

for u, v ∈ col{A}. (4)

To illustrate that the introduced sketching methods fulfill
this property, we depict how they impact the relative norm
in the supplementary materials alongside the computed
distortion of some of the sketching methods for a matrix
A ∈ R1024×50 with entries i.i.d. sampled from a standard
normal distribution, and all these sketching matrices are of
the same size.

3 Test Problems

3.1 Low-Rank Approximation

The low-rank approximation problem can be stated as fol-
lows: Given an m × n matrix A, find a matrix Ak such
that rank(Ak) = k ≪ min(m,n) and ∥A−Ak∥2 satisfy
some requirements.

According to the two purposes of low-rank approxima-
tion, it could be classified into a fixed-rank one and a
fixed-precision one. In our work, we mainly discuss the
fixed-rank one. There are two primary approaches to solv-
ing this problem, which either focus on the spectrum of the
target matrix or on its submatrices. Here, we focus on the
former one, and it is best exemplified through SVD. This
approach gives the best possible rank k approximation by
the Eckart-Young-Mirsky theorem [4], though infeasible
as it takes O(mn2).

With randomized algorithms, though, the problem could be
significantly reduced; the illustration of SVD and random-
ized SVD could be checked in the supplementary materials.

3.2 Overdetermined Least Squares

The overdetermined least squares problem is defined as
follows:

For A ∈ Rm×n, x ∈ Rn, b ∈ Rm such that m > n,
minimize ∥Ax− b∥22.

This can be solved by a number of deterministic algo-
rithms with various trade-offs between speed, accuracy,

and stability.With randomized algorithms, we follow the
sketch-and-solve routine.

4 Experiments

4.1 Datasets

We use the breastMNIST training dataset from the
MedMNIST database [17] for low-rank approximation,
which has 546 data points3. This data is almost of full
rank and is poorly conditioned. In addition to that, we
use scikit-learn’s dataset on Californian housing4, which
is suitable for least squares. As the dataset contains 20640
data points, we sample a smaller, easier-to-handle number
of 1024 data points.

Our synthetically generated data are split into three differ-
ent categories. First, we use matrices A with all entries
sampled i.i.d. from a standard normal distribution, which
behave nicely numerically and serve as a good base case.
Secondly, we use matrices with singular values that span a
wide range, a fact which results in a high condition number.
In particular, we select A = UΣV T with U, V orthogonal
and Σ diagonal with σii = eki , where ki are equidistantly
spread in {−10, 10}. Last, we utilize multicollinear ma-
trices that we generate by sampling a vector a from an
i.i.d. standard normal distribution and then setting A’s ith
column to ai = a+ 10−6θi where θi are standard normal
random vectors with independent components.

4.2 Results

4.2.1 Low Rank Approximation

To align with the metric that we use in least squares,
here we use the relative error compared with the optimal
one [13] on numerical experiments and the relative error
compared with the original data on a real-world dataset,
defined as follows

Error =
||Â−Ak||F

Ak
(5)

Note that for the breastMNIST experiments, we are using
the squared error, and for numerical experiments, we are
using the non-squared ones.

Our results for BreastMNIST are shown in Figure 1aWe
also conduct numerical experiments solving the low-rank
approximation problem. The results are shown in Figure
1b and Figure 2. On breastMNIST, we could see that the
result is almost the same. It is worth attention that the
three matrices we used for numerical experiments vary
in their condition number. For the m1 matrix, a relatively
well-conditioned random Gaussian matrix was used; the
other two are poorly conditioned. A little bit different
from the ill-conditioned matrices that we chose in least

3https://zenodo.org/records/10519652
4https://scikit-learn.org/1.5/modules/generated/sklearn.datasets.fetch_california_housing.html
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(a) Randomized SVD results on BreastMMNIST dataset
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(b) 300-rank approximation for A ∈ R512×1024

Figure 1: Results for low-rank approximation
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Figure 2: Numerical Results of Different kinds of Sketching Matrices on Some Very Ill-conditioned Matrices

squares approximation. The first ill-conditioned one is the
matrix with singular values over a large range with noises;
the second one is a Hilbert matrix. It could be seen from
those figures that there is an ’optimal’ rank where the rela-
tive errors drop dramatically, especially for ill-conditioned
matrices.

4.2.2 Least Squares

We solved the least squares problem minx ∥Ax− b∥2 for
the three types of matrices described in Section 4.1 using
all sketching methods introduced so far using both the
QR and the SVD algorithm that is outlined in the supple-
mentary materials. For all choices of A, we chose b as a
standard normal random vector with independent compo-
nents. We found both methods to yield the same accuracy,
so we only depict the results for QR here. In order to mea-
sure the accuracy of the different sketching methods, we
used the following two metrics. First, the relative norm of
the residual, i.e.,

∥Axopt − b∥2 − ∥Axsketch − b∥2
∥Axopt − b∥2

, (6)

and second, the relative error of the found xsketch, i.e.,

∥xopt − xsketch∥2
∥xopt∥2

. (7)

Repeating these experiments for many different sizes of
A yields genuinely similar behavior. Thus, in Figure 6 in
the supplementary materials we only chose to depict the
results for A ∈ R256×20.

We repeated the same process for the Californian housing
dataset introduced in Section 4.1. Here we found that the
trigonometric transforms performed very poorly, so we
decided to exclude them from the plot. The plot can be
checked in the supplementary materials.

5 Conclusion

First, we verified that the orthogonal transform achieves
the best performance, as shown in Figure 6 and that all
dense i.i.d. sketching operators behave equivalently and
robustly. However, sparse operators with poorly condi-
tioned matrices having spectra covering a wide range, we
observe different behavior. In this case, the CountSketch
operator (CWT) performs the worst. Their performances
also vary more when relative errors computed are larger,
which could also be due to their ill-conditionedness. At the
same time, results from SRFTs sometimes perform very
poorly, which we leave to research in the future.

4
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Figure 4: Illustration of the embedding property for different sketching methods (left). Distortion for a matrix
A ∈ R1024×50 with i.i.d. standard normal entries for different sketching methods (right).

6 supplementary materials

6.1 Sketching Properties

The sketching properties could be checked in Figure 4

6.2 SVD

• Singular Value Decomposition: Factorizing the target ma-
trix as A = UΣV T with U, V orthogonal and Σ diagonal.
By denoting ui and vi to be the column vectors of U and
V respectively and Σ = diag(σ1, . . . , σn) and using the
convention that σ1 ≥ · · · ≥ σn = 0, we can also write A
as follows A =

∑n
i=1 σiuiv

T
i and form Ak by truncating

the sum at some k ≤ n.

The implementation of randomized SVD, see 1.

6.3 Dense Operators

• Rademacher sketching operators: entries are ±1 with
equal probability.

• Uniform sketching operators: entries are sampled from
a uniform distribution over a symmetric interval.

• Gaussian sketching operators: entries are sampled from
a normal distribution with mean 0.

6.4 Sparse Operators

The one we mentioned in the main text can be generalized
to a Sparse Sign Embedding (SSE) [7], which can con-
tain more than one non-zero entry per column. Then with
high probability, for any d-dimensional subspace, S is an
embedding with constant distortion 1

2 [16].

These can also be generated by specifying a sparsity pa-
rameter ζ to represent the number of non-zero elements per
column. Analogously, it has been shown that a sparse sign
matrix serves as a subspace embedding with high probabil-
ity with constant distortion for an arbitrary l-dimensional
subspace of Rm when the embedding dimension grows
O(d log d) and the sparsity parameter ζ as O(log d) [12].

Another scheme labeled JLT [9] demonstrated in our
numerical experiments is a sparse random Rademacher
matrix, also according to the lemma 1. Here we use
the implementation from https://github.com/dell/
jlt/blob/main/linearMapping.py.

6.5 Solving Overdetermined Least Squares

• Normal equations: Conceptually the simplest, it solves
the problem by letting x = (ATA)−1AT b. Despite re-
quiring the least amount of floating point operations of
all the following methods, this method method is not very
suitable for practical applications because it is unstable for
poorly-conditioned A.

• QR decomposition: This method performs the following
factorization: A = QR,Q ∈ Rm×n, R ∈ Rn×n such that
Q is orthogonal and R is upper triangular for the solution
x = R−1QT . QR factorization can be achieved through a
number of algorithms such as Gram-Schmidt or modified
Gram-Schmidt, or those which incrementally construct the
result using Householder reflections or Givens rotations.
In practice, while all of these algorithms have complex-
ity O(mn2), Householder rotations are the most efficient
among all four, while still being stable and preserving the
orthogonality of Q’s columns.

• Singular Value Decomposition: This method performs
the following factorization A = UΣV T , where U, V are

5
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Algorithm 1 Sampling and Projection of the Target Matrix
Input:A, k, s ▷ Target Matrix, Desired Rank, Oversampling Parameter
Output: B

1: S = sketch_matrix(m, k + s) ▷ Generates a m× k + s sketching matrix
2: Y = SA
3: Q, _=qr(Y ) ▷ Finds the orthogonal component of the sketched matrix
4: B = QTA ▷ Projects the target matrix to the lower dimensional subspace

orthogonal and Σ is diagonal. The SVD van be used to
solve the problem by setting x = V Σ+UT b where Σ+

is the psuedoinverse of Σ. While the most numerically
stable, the SVD takes O(mn2), not to mention the matrix
multiplication required to form x.

6.6 California Housing Dataset

See 5 for reference.

6.7 Numerical Results from Least Squares

See 6 for reference.
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Figure 5: California Housing Dataset with Least Squares
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Figure 6: Accuracy of least squares using different matrices
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