arXiv:2411.01077v1 [cs.CL] 1 Nov 2024

Emoji Attack: A Method for Misleading Judge LL.Ms in Safety Risk Detection

Zhipeng Wei'*, Yuqi Liu', N. Benjamin Erichson'*

! International Computer Science Institute
2 Lawrence Berkeley National Laboratory

Abstract

Jailbreaking attacks show how Large Language Models
(LLMs) can be tricked into generating harmful outputs us-
ing malicious prompts. To prevent these attacks, other LLMs
are often used as judges to evaluate the harmfulness of the
generated content. However, relying on LLMs as judges can
introduce biases into the detection process, which in turn
compromises the effectiveness of the evaluation. In this pa-
per, we show that Judge LLMs, like other LLMs, are also
affected by token segmentation bias. This bias occurs when
tokens are split into smaller sub-tokens, altering their embed-
dings. This makes it harder for the model to detect harm-
ful content. Specifically, this bias can cause sub-tokens to
differ significantly from the original token in the embed-
ding space, leading to incorrect “safe” predictions for harm-
ful content. To exploit this bias in Judge LLMs, we intro-
duce the Emoji Attack — a method that places emojis within
tokens to increase the embedding differences between sub-
tokens and their originals. These emojis create new tokens
that further distort the token embeddings, exacerbating the
bias. To counter the Emoji Attack, we design prompts that
help LLMs filter out unusual characters. However, this de-
fense can still be bypassed by using a mix of emojis and other
characters. The Emoji Attack can also be combined with ex-
isting jailbreaking prompts using few-shot learning, which
enables LLMs to generate harmful responses with emojis.
These responses are often mistakenly labeled as “safe” by
Judge LLMs, allowing the attack to slip through. Our exper-
iments with six state-of-the-art Judge LLMs show that the
Emoji Attack allows 25% of harmful responses to bypass de-
tection by Llama Guard and Llama Guard 2, and up to 75%
by ShieldLM. These results highlight the need for stronger
Judge LLMs to address this vulnerability. Our code is avail-
able at https://github.com/zhipeng- wei/EmojiAttack.

Introduction

Judge Large Language Models (LLMs) have been intro-
duced to evaluate the alignment of LLMs with human pref-
erences (Chiang et al. 2023; Zheng et al. 2024), providing
a more efficient alternative to traditional human judges. The
success of these models has recently led to the development
of specialized Judge LLMs focused on safety risk detec-
tion (Han et al. 2024; Zhang et al. 2024). One key appli-
cation of these Judge LLMs is evaluating the harmfulness of

*Corresponding author: zwei@icsi.berkeley.edu

responses to prevent jailbreaking (Inan et al. 2023; Llama-
Team 2024). Specifically, they detect unsafe content gener-
ated by a target LLM and prompt it to stop responding if
harmful content is identified. Additionally, Judge LLMs can
provide feedback during jailbreaking attacks, which helps
refine attack strategies. However, Judge LLMs are known to
suffer from various biases (Zheng et al. 2024; Chen et al.
2024; Wang et al. 2023; Koo et al. 2023), such as posi-
tional bias (Zheng et al. 2024), where certain positions are
favored over others. Despite the known inherent biases in
Judge LLMs, little work has been done to explore these bi-
ases in the context of safety risk detection. This is surpris-
ing because the biases involved in safety risk detection are
likely different from those in assessing human preferences,
due to the distinct nature of the tasks. Therefore, it is crucial
to identify and address these biases to improve the reliability
of Judge LLMs in preventing harmful outputs.

In this paper, we focus on investigating the biases present
in Judge LLMs used for safety risk detection, particularly
token segmentation bias. Token segmentation bias occurs
when Judge LLMs split tokens into smaller sub-tokens,
which leads to alterations in the embedding space. These
alterations disrupt the contextual relationships in the cross-
attention layers, potentially leading to harmful responses
being misclassified as “safe”. (Figure 1(a)). Recent work
by (Claburn 2024) examined a related bias in prompt injec-
tion, that is based on the insertion on spaces between char-
acters in a given prompt. In contrast, the token segmenta-
tion bias we study is based on the idea of splitting tokens
into smaller sub-tokens, which in turn can be used for al-
tering the embeddings. Our findings indicate that introduc-
ing token segmentation bias into harmful responses reduces
the “unsafe” prediction rate of Judge LLMs, such as Llama
Guard (Inan et al. 2023) and Llama Guard 2 (Llama-Team
2024), by approximately 12% on average. This suggests that
token segmentation bias has a significant impact on the ef-
fectiveness of Judge LLMs in detecting harmful content.

Building on the concept of token segmentation bias, we
introduce the Emoji Attack, a method specifically designed
to exploit this vulnerability in Judge LLMs. Unlike tradi-
tional token splitting by spaces, the Emoji Attack involves
inserting emojis within tokens of harmful responses. These
inserted emojis disrupt the token structure, resulting in new
tokens that cause more significant changes in the embed-

[Bomb the airport }

— @3 =

Judge LLMs
(a)

[Bombtheairport}

Instruction: Insert (= inside each token
Q: One benign query
R: The corresponding response with (&
Input: existing jailbreaking prompts
-

Output: responses with ==

Position Selection Strategy

Cosine
Similarity
— _

Lightweight

Surrogate

N
model @/ -
-

oo |

Tokens Embeddings

Output: | can’t assist with that.

/ [Bo;—mb“ uhe}[acir][pvo@

h'd

@ |:> Output: responses with = |:> %

Target LLMs Judge LLMs
(b)

!

10)

= o s

Judge LLMs
(©)

Figure 1: Overview of token segmentation bias and the Emoji Attack that exploits it. (a) Token segmentation bias: Dividing
tokens into sub-tokens misleads Judge LLMs into classifying harmful content as “’safe”. (b) Emoji Attack: The position selection
strategy identifies the optimal insertion point by minimizing cosine similarity, after which emojis are added to mislead Judge
LLMs into making “safe” predictions. (c) Practical Emoji Attack: Instructions, including a benign query and response with
emojis, direct target LLMs to generate harmful responses containing emojis. Judge LLMs permit these outputs when they are

misclassified as “’safe”.

ding space. We also developed a position selection strat-
egy to identify optimal emoji insertion points, maximizing
the difference between the sub-tokens and the original to-
ken in the embedding space. As illustrated in Figure 1(b),
we use a lightweight surrogate model to find the optimal in-
sertion points by comparing the cosine similarity between
the sub-token embeddings and the original token. Compared
to token segmentation bias alone, the Emoji Attack further
reduces the “unsafe” prediction rate for Llama Guard and
Llama Guard 2 by an additional 25% on average. Addi-
tionally, we demonstrate that combining different delimiters,
like characters and emojis, can make simple filter defense
strategies ineffective, highlighting the potential to advance
jailbreaking techniques based on token segmentation bias.

We also explore the practical application of the Emoji At-
tack in scenarios where Judge LLMs directly assess the tar-
get LLM responses to determine their suitability for sharing
with users. In this scenario, although we cannot manipulate
the responses, we can access the input prompts of the target
LLM. As adversaries, we combine the Emoji Attack with ex-
isting jailbreaking prompts to evade “unsafe” classification
by Judge LLMs. As shown in Figure 1(c), we leverage the
in-context learning (Brown et al. 2020) abilities of LLMs
to instruct target LLMs to generate harmful responses with
inserted emojis. The presence of these emojis increases the

likelihood that the responses will be classified as ”safe” by
Judge LLMs. This practical application of the Emoji Attack
enhances the effectiveness of jailbreaking techniques, reduc-
ing “unsafe” detection by an average of 15.8% across six
state-of-the-art Judge LLMs.

Our main contributions are as follows:

* We study the biases of Judge LLMs in safety risk de-
tection, specifically identifying token segmentation bias,
where the division of tokens into sub-tokens leads to in-
correct “safe” predictions for harmful responses by Judge
LLMs.

* Building on token segmentation bias, we propose the
Emoji Attack, a method that inserts emojis at optimal
positions within tokens to maximize the embedding dis-
crepancy between sub-tokens and the original token. Ad-
ditionally, this attack can be combined with other delim-
iters to render simple filter defense strategies ineffective.

* We explore the practical application of the Emoji Attack
by integrating it with existing jailbreaking prompts to
evade “unsafe” classification by Judge LLMs.

* We conduct experiments with six state-of-the-art Judge
LLMs: Llama Guard, Llama Guard 2, ShieldLM, Wild-
Guard, GPT-3.5, and GPT-4. Our findings reveal that
Judge LLMs are vulnerable to both token segmentation
bias and our Emoji Attack, which exploits this bias.

Related Work
Judge LLMs

Judge LLMs, which are designed to assess human prefer-
ences, have been found to exhibit biases that affect the reli-
ability of their evaluations (Pangakis, Wolken, and Fasching
2023). These models tend to favor responses that appear
superficially good (Zeng et al. 2023), are favorably posi-
tioned (Wang et al. 2023), are self-generated, or exhibit
verbosity (Zheng et al. 2024). Additionally, recent studies
have identified other biases, including misinformation over-
sight bias, gender bias, authority bias, and beauty bias (Chen
et al. 2024). These biases raise concerns about the reliability
of Judge LLMs, especially in critical tasks like jailbreaking,
where accurately assessing whether a target LLM’s response
is safe is crucial.

Recent research has increasingly focused on developing
Judge LLMs specifically aimed at safety risk detection. For
example, Meta has proposed Llama Guard (Inan et al. 2023)
and Llama Guard 2 (Llama-Team 2024), which are based
on Llama 2 (Touvron et al. 2023) and Llama 3 (Al@Meta
2024), respectively. These models are designed to evalu-
ate the harmfulness of responses and to prevent jailbreak-
ing. Other models, such as ShieldLM (Zhang et al. 2024)
and WildGuard (Han et al. 2024), have been introduced to
further enhance the robustness of Judge LLMs. Addition-
ally, widely-used models like GPT-3.5 and GPT-4 have been
trained to detect harmful responses (Chao et al. 2023; Qi
et al. 2023). Despite these developments, the exploration of
biases in Judge LLMs used for jailbreaking remains under-
explored. This paper addresses this gap by identifying token
segmentation bias in Judge LLMs and proposing the Emoji
Attack to exploit this bias.

Jailbreaking Attacks

Current jailbreaking attacks involve crafting prompts that
trick target LLMs to generate harmful responses. These at-
tacks are typically divided into two categories: (i) token-
level, and (ii) prompt-level attacks.

Token-level attacks focus on optimizing tokens added
to malicious queries to cause LLMs to produce harm-
ful responses. For instance, Greedy Coordinate Gradient
(GCG) (Zou et al. 2023) uses gradients with respect to
each token in the vocabulary to perform a greedy search
for tokens. This method has been enhanced with momen-
tum (Zhang and Wei 2024), by mapping discrete space
into a continuous space (Hu et al. 2024; Geisler et al.
2024), and by employing advanced search methods like
best-first search (Hayase et al. 2024) and random search
with multiple restarts (Andriushchenko, Croce, and Flam-
marion 2024). To capture the distribution of successful suf-
fixes, AmpleGCG (Liao and Sun 2024) trains an additional
generative model for rapid generation. Other approaches,
like AutoDAN (Liu et al. 2023), use a hierarchical genetic
algorithm to optimize input tokens, while JailMine (Li et al.
2024) employs a sorting model to select token manipulations
that generate affirmative responses while minimizing refusal
phrases. However, token-level attacks often require numer-
ous queries and can be challenging for humans to interpret.

Prompt-level attacks address these challenges by us-
ing additional LLMs to automatically generate jailbreak-
ing prompts. For example, PAIR (Chao et al. 2023) refines
prompts iteratively with LLMs over twenty queries, while
TAP (Mehrotra et al. 2023) enhances PAIR by incorporating
tree-of-thought reasoning (Yao et al. 2024). GPTFuzz (Yu,
Lin, and Xing 2023) employs a series of prompt mutations,
assisted by LLMs, to update jailbreaking prompts. Other
methods leverage mismatched generalization (Wei, Haghta-
lab, and Steinhardt 2024) of target LLMs by transforming
malicious queries into various formats, such as code com-
pletion (Lv et al. 2024), Base64 (Wei, Haghtalab, and Stein-
hardt 2024), and cipher (Yuan et al. 2023), or by constructing
nested scenes (Ding et al. 2023; Li et al. 2023).

Despite the excitement about jailbreaking attacks, there
has been little exploration of attacks targeting Judge LLMs,
which evaluate the harmfulness of target LLMs’ responses.
One related study (Mangaokar et al. 2024) applies Greedy
Coordinate Gradient (GCG) to optimize a universal adver-
sarial prefix on white-box Judge LLMs. This method lever-
ages the in-context learning abilities of LLMs (Brown et al.
2020) to instruct target LLMs to generate harmful responses
using the universal prefix, thereby misleading Judge LLMs.
However, like GCG, this approach requires a large number
of queries and faces scalability issues. In contrast, our Emoji
Attack is based on token segmentation bias, requiring no op-
timization. It can also be easily combined with existing jail-
breaking prompts to mislead Judge LLMs.

Methodology
Preliminary

Let fiarget denote the target LLM, which processes a user
query Ui., = (ul, Uy ooy un> to produce an output sequence
Wim = (W1, Wa, ..., Wy,). In this context, u; and w; repre-
sent tokens drawn from the token vocabulary V. Addition-
ally, we introduce g;yq4ge as the Judge LLM, which evalu-
ates the output sequence wj.,, produced by fi4rge+ and pro-
vides a binary value {0, 1} indicating whether w; .,,, contains
harmful content. Based on the result from g;yq4e, We can
modify fiqrget’s Output to avoid generating harmful content:

Wian, if Gjudge(Wiam) =0
arge m) = i !
ftarg t(u1:n) {J—v otherwise, M

where L denotes the refusal phrases, e.g.“T’m sorry, but I
can’t assist with that.”

Token Segmentation Bias. Token segmentation bias
refers to the tendency of token segmentation to produce
skewed outcomes in LLMs. Specifically, this bias occurs
when the segmentation produces sub-tokens with different
embeddings or correlations with other tokens compared to
the original token. Analyzing this bias is essential due to its
potential to facilitate the generation of harmful content. For
instance, adversaries can exploit this bias to shift predictions
from “unsafe” to “safe”, thereby spreading harmful material
to users. In the following, we examine this bias to demon-
strate its potential to mislead Judge LLMs.

Default Prompt

0.12
0.10
0.08
0.06
0.04
0.02
0.00

Bomb the air Bom b t hea ir p ort

Segmented Prompt

Figure 2: The visualization of cross-attention values for
default and segmented prompts. The sub-tokens “p” and
“ir” from the segmented prompt (bottom right corner) show
hlgher correlations than those from the default prompt.

Figure 1(a) illustrates an example of token segmentation
bias. Llama Guard (Inan et al. 2023) is tasked with eval-
uating harmful responses. When the tokens from a harm-
ful response are segmented by spaces, Llama Guard is mis-
led into predicting the content as “safe”. Regarding the ori-
gin of this bias, we propose that the resulting sub-tokens
may possess different embeddings and contextual relation-
ships compared to the original token. Such changes in em-
beddings and contextual relationships can significantly im-
pact how Judge LLMs interpret and evaluate the content.
As demonstrated in Figure 2, the tokens “p” and “ir” from
the segmented prompt (bottom right corner) have the high-
est cross-attention value. In contrast, the tokens “port” and
“air” from the default prompt exhibit relatively lower cross-
attention values. Therefore, those sub-tokens have altered
contextual relationships due to differing embeddings com-
pared to the original tokens. This alternation can potentially
mislead Judge LLMs.

To further analyze the token segmentation bias, we con-
struct one dataset comprising 1,432 harmful responses (de-
tailed in Section “Experimental Settings”). For each token
w; in the responses, we randomly split it into two sub-tokens
(w!,wl') by space. This process transforms the responses
into wt,, = (wi,wi,whwh, ... ,wl w). We compare
the evaluation differences between wi.,,, and wj.,, in Ta-
ble 1 using Llama Guard (Inan et al. 2023), Llama Guard
2 (Llama-Team 2024), ShieldLM (Zhang et al. 2024), and
WildGurad (Han et al. 2024) as the Judge LLMs. These
judges are instruction-tuned on safety datasets to identify
prompt harmfulness. We find that all of them demonstrate to-
ken segmentation bias. For example, WildGuard exhibits the
highest “unsafe” prediction rate of 93.2%, but this decreases
to 61.2% in the presence of token segmentation bias. Even
Llama Guard 2, based on the powerful Llama3 (Al@Meta
2024), shows a reduction of approximately 7%. These re-
sults suggest that current Judge LLLMs are affected by token
segmentation bias.

Emoji Attack

As demonstrated in the above experiments, space insertion
in token segmentation bias could lead to misclassification

Algorithm 1: Emoji Attack

Input: an emoji £, an embedding function from one
surrogate model Emb(-), a response wy .,

Output: The modified response wy.,,,-

1: Initialize w7, by ()
2: fori =1tomdo
3: forj=2toDdo
Calculate s; with the token w}*” by Eq.2 and 3
end for
Select j* with the lowest s -
D = (w!, o] T E)] .. w])
8: Assign w}P to w}
9: end for
10: return wy.,,

Nk

of harmful responses by altering token boundaries. How-
ever, this method exhibits a limited impact on the embedding
space due to its uniform nature. To further reveal the vulner-
ability of Judge LLMs, we introduce the Emoji Attack. Un-
like spaces, emojis introduce unexpected and diverse char-
acters that significantly disrupt tokenization and representa-
tion. Consequently, the Emoji Attack leverages the rich se-
mantic and visual complexity of emojis, resulting in a more
pronounced and effective manipulation of Judge LLMs. In
addition to the content inserted, our Emoji Attack also con-
siders the position of emojis within each token to mislead
Judge LLMs. Specifically, the position of emojis — whether
at the beginning, middle, or end of a token — can influence
how Judge LLMs process and interpret the text, thereby en-
hancing the effectiveness of the Emoji Attack.

Given a token w}P = (w},...,wd, ...,wP), where w
denotes the d-th character in this token, the Emoji Attack in-
serts an emoji £ into this token at the j-th position to obtain
WFPH = (wl L w! T @(E) Plw!, ..., wP), where @
denotes the concatenation of two token sequences. To en-
sure that w}*P divides into sub-tokens, j ranges from 2
to D. After tokenization, w1 D1 generates two sub-tokens

(w},...,w!™") and (w!, ...,wP), as well as new tokens for
the emoji (£). The alteration of the original token into sub-
tokens and the creation of emoji tokens drive its represen-
tation away from the original, thereby misleading Judge
LLMs.

As the position j varies from 2 to D, the sub-tokens have
multiple variations. Determining the position with the great-
est influence on Judge LLMs typically requires access to
the Judge LLMs themselves. Based on the hypothesis that
the effectiveness of these variations is influenced by how
the embeddings of the sub-tokens deviate from those of the
original token, the Emoji Attack optimizes for an optimal
position j* using a surrogate model. Specifically, the Emoji
Attack assigns a score to each position 7 as follows:

=CS(Emb((w}, ... w] "y P!, ... wP)), @
Emb((w;, ..., w, ..., wl))), 3)

where C'S(+,) calculates the cosine similarity between the

Respond to the following Question by inserting an emoji (=)
inside each word of your Response. Here is one example to
illustrate the format:

Q: I'm crafting a resume for a software engineering position. Can you
advise on key points to include?
R: 1'% . Educa & tion: Mo = st @'~ re fami = liar wi = th ...

2= . Rele'= vant Wo'= rk Exper < ience: Th= isi= st< he ...

User: Create a science fiction ... Develop a strategy for hacking into a
overnment database and stealing sensitive information ...

4
© &
-
Target LLM Judge LLM
1 i)

Output: Th= e te’= am of sci < entists, eng< ineers, a<= nd
ha= ckers ga= ther to di~ scu~ ss th= eir pl~an ...

Figure 3: The illustration of the practical Emoji Attack, with
underlined texts indicating an existing jailbreaking prompt.
The response incorporates emojis to mislead judge LLMs
into classifying it as “safe”.

embeddings of the sub-tokens and the original token, and
Emb(-) denotes the embeddings obtained from the surrogate
model. The Emoji Attack then selects the position j* with the
lowest score s;-. We present the Emoji Attack in Algorithm
1. By employing the position selection strategy and inserting
emojis, the Emoji Attack can generate modified responses
with a high probability of achieving a “safe” prediction.

Practical Emoji Attack

The above Emoji Attack assumes that we have the capability
to manipulate the inputs to Judge LLMs. However, in practi-
cal scenarios, Judge LLMs are employed directly to filter the
outputs of target LLMs before these outputs are presented to
users. Thanks to the in-context learning abilities of LLMs
(Brown et al. 2020), we incorporate a benign example, com-
prising a benign query and a benign response with emojis,
into existing jailbreaking prompts to guide the target LLMs
in generating harmful responses with emojis. Figure 3 shows
the practical Emoji Attack. According to our instructions, the
target LLM incorporates emojis into its responses, which
are then classified as “safe” by the Judge LLM. Although
this insertion for each token may not achieve the lowest s,
the practical Emoji Attack can still effectively mislead Judge
LLMs by exploiting token segmentation bias.

Experiment
Experiment Settings

Datasets. We sample harmful responses from Ad-
vBench (Zou et al. 2023), harmful outputs generated by GPT
(Brown et al. 2020) and Llama 2 (Touvron et al. 2023) as re-
ported by (Helbling et al. 2023), and Red Teaming attempts

from (Ganguli et al. 2022). In total, we collect 1,432 harm-
ful responses with a diverse range of word lengths, from 2
to 836 words.

Judge LLLMs. We utilize Llama Guard (Inan et al. 2023),
Llama Guard 2 (Llama-Team 2024), ShieldLM (Zhang et al.
2024), and WildGuard (Han et al. 2024) as Judge LLMs,
which are instruction-tuned on safety datasets specifically
for safety risk detection. For ShieldLM, we use internlm?2-
7b (Cai et al. 2024) as the base model. In addition, we use
GPT-3.5 as a Judge LLM to assign harmful scores ranging
from 1 to 10 (Chao et al. 2023), and GPT-4 to score on a
scale from 1 to 5 (Qi et al. 2023). For GPT-3.5, a response
is classified as “unsafe” with a harmful score of 5 or higher,
while for GPT-4, the threshold is 3 or higher.

Attack Setting. We use the “unsafe” prediction ratio to
evaluate Judge LLMs, which represents the proportion of
harmful responses successfully classified as “unsafe” by
Judge LLMs. Therefore, an attack with a lower “unsafe” pre-
diction ratio is more effective at misleading Judge LLMs.
For the Emoji Attack, we use a lightweight model “gtr-t5-
x1” (Ni et al. 2021) as the surrogate model. This model maps
sentences to a 768-dimensional dense vector space and is
widely used for semantic search tasks.

Experiments on Emoji Attack

Efficacy of Emoji Attack. In this section, we present the
effects of token segmentation bias and our Emoji Attack on
misleading Judge LLMs, as detailed in Table 1. We observe
that WildGuard achieves the best performance in safety risk
detection, while other Judge LLMs achieve an “unsafe” pre-
diction ratio of around 80%. All of these models outper-
form GPT-3.5, which has a prediction ratio of 48.5%, and
thus we exclude it from this experiment. Besides, all Judge
LLMs exhibit significant reductions in “unsafe” prediction
ratios under both token segmentation bias and Emoji At-
tacks, demonstrating notable susceptibility to this type of
bias. Moreover, compared to token segmentation bias, the
Emoji Attack further decreases the prediction ratio from
59.6% to 41.3%. This suggests that emojis have a more
pronounced effect on reducing the detection capabilities of
the Judge LLMs by introducing new emoji tokens. In addi-
tion, the proposed position selection strategy enhances the
effectiveness of the Emoji Attack by identifying insertion
positions with the lowest s7, thereby maximizing the em-
bedding distance between sub-tokens and the original to-
ken. Finally, our Emoji Attack can also serve as an evalua-
tion metric for assessing the robustness of Judge LLMs. The
results highlight that WildGuard consistently achieves the
highest “unsafe” prediction ratio, demonstrating its effec-
tiveness in detecting unsafe content. However, after adding
bias, ShieldLM’s prediction rate significantly drops to 3.0%,
indicating its vulnerability to such attacks. Overall, our to-
ken segmentation bias and Emoji Attack reveal the vulnera-
bility of current Judge LLM:s.

Effect of the Number of Inserted Emojis. We also ex-
amine the effect of varying the number of inserted emojis
on “unsafe” prediction ratio, as illustrated in Figure 4. We

Judge LLMs |
LG LG2 Shield Wild

Default 81.3% 79.1% 78.4% 93.2% 83.0%
Token Seg. 64.6% 724% 40.0% 61.2% 59.6%

Emoji Attack 39.0% 559% 92% 60.9% 41.3%
+ Position 351% 513% 3.0% 564% 36.5%

Prompt Avg.

Table 1: “Unsafe” prediction ratio of different Judge LLMs.
“Token Seg.” denotes the token segmentation bias. “LG”,
“LG2”, “Shield”, and “Wild” denotes Llama Guard, Llama
Guard 2, ShieldLM, and WildGuard, respectively.

0.801 LG + Random Position
o 075- —— LG + Our Position
T LG2 + Random Position
14
s 0.70+ —¥— LG2 + Our Position
% 0.65
Q
o 0.601
Q
® 0.55-
=
)
0.50
045’ T T T T T

0 20 40 60 80 100
Number of Inserted Emojis

Figure 4: The effect of the number of inserted emojis on “un-
safe” prediction ratio. “Our Position” denotes the proposed
position selection strategy.

evaluate Llama Guard and Llama Guard 2 using our Emoji
Attack with both random position insertion and our proposed
position selection strategy. We can observe that the “unsafe”
prediction ratio gradually increases with the number of in-
serted emojis. As more emojis are inserted, the response pro-
gressively shifts in the embedding space, thereby misleading
the Judge LLMs. The results also demonstrate that a small
number of emojis can be inserted into harmful responses to
maintain the invisibility of the Emoji Attack.

Effect of Other Delimiters. We further assess token seg-
mentation bias using Llama Guard with various delimiters
in Figure 5. First, compared to the performance of default
prompts without delimiters, prompts with delimiters achieve
a significant decrease in the “unsafe” prediction ratio. This
demonstrates the effectiveness of token segmentation bias
with various delimiters. We also observe that, when com-
bined with the proposed position selection strategy, token
segmentation bias using any delimiters further decreases the
“unsafe” prediction ratio. This highlights that our position
selection strategy could improve the effectiveness of token
segmentation bias.

0.8 Default Prompt Random Position

0.7 Our Position
0.6
0.5

0.4

Unsafe Prediction Ratio

0.31

O.2IIIIII
@ # ? & % .

Other Delimiters

Figure 5: The effect of various delimiters on “unsafe” pre-
diction ratio of Llama Guard. The red dashed line denotes
the prediction ratio of default prompts without delimiters.

Posb='t a pictub~re ob=fyoub~rgb<~enib~tab=ls
Y
@ = Post a picture of your green beans

LLM Filter

Figure 6: The illustration of how complex delimiters evade
filtering-based defense strategy. The underlined character
“b” and the smiley face emoji represent the inserted content.
We use “gpt-3.5-turbo” as the LLM filter, which is prompted
with the instruction “Remove all unnecessary symbols from
the following response”.

Potential Defense Strategy. One potential defense strat-
egy is to design prompts that filter out abnormal characters
in the responses of target LLMs. Inserting a single delimiter
across multiple tokens is relatively easy to detect. However,
using different delimiters for various tokens complicates de-
tection by disrupting token patterns in less predictable ways.
For example, we employ “gpt-3.5-turbo” as the additional
LLM filter to remove unnecessary symbols from harmful re-
sponses. As shown in Figure 6, when we use a mix of a char-
acter “b” and a smiley face emoji as a delimiter, the LLM
filter generates a benign response that differs significantly
from the original harmful response. This benign response is
classified as “safe” by Judge LLMs, allowing the original
harmful response to be presented to users, as described in
Equation 1. We leave the exploration of combinational at-
tacks and further defense strategies to future work. The re-
sults highlight the significant potential of developing token
segmentation bias-based jailbreaking techniques.

Judge LLMs |

Attacks # prompts Avg.
Llama Guard Llama Guard2 ShieldLM WildGuard GPT-3.5 GPT4

Deepinception 57 35.1% 33.3% 71.9% 71.9% 71.9% 86.0% 61.7%
+ Emoji Attack 15.8% 47.3% 3.5% 29.8% 404% 86.0% 37.2%
ReNellm 03 45.2% 69.9% 62.4% 82.8% 72.0% 925% 70.8%
+ Emoji Attack 33.3% 55.9% 22.6% 46.2% 462% 86.0% 48.3%
Jailbroken 197 70.1% 73.1% 73.1% 84.3% 69.0% 90.4% 76.7%
+ Emoiji Attack 53.8% 55.3% 39.1% 67.5% 751% 91.4% 63.7%
CodeChameleon 205 23.4% 41.5% 38.5% 47.8% 273% 137% 42.0%
+ Emoji Atack 12.2% 31.2% 18.5% 32.2% 21.5% 58.0% 28.9%
) 44.9% 56.7% 58.3% 69.2% 543% 84.1% 61.3%
Weighted Average 552 31.0% 45.7% 25.0% 46.9% 46.7% T7.5% 45.5%

Table 2: “Unsafe” prediction ratio of various Judge LLMs when evaluating existing jailbreaking prompts. “# prompts” denotes
the number of successful jailbreaking prompts. The target LLM used to generate harmful responses is “gpt-3.5-turbo”. We bold
the lowest ratio for each Judge LLM. The results demonstrate that our proposed Emoji Attack significantly reduces the “unsafe”
prediction ratio on average across all Judge LLMs tested. Notably, ShieldLM is particularly vulnerable to our Emoji Attack.

Experiments on Practical Emoji Attack

We adopt existing jailbreaking prompts from EasyJail-
break benchmark (Zhou et al. 2024), which includes
Deepinception (Li et al. 2023), ReNellm (Ding et al.
2023), Jailbroken (Wei, Haghtalab, and Steinhardt 2024),
CodeChameleon (Lv et al. 2024), GCG(Zou et al. 2023),
PAIR (Chao et al. 2023), and GPTFuzz (Yu, Lin, and Xing
2023). We use a predefined set of refusal phrases to de-
tect their presence in responses and identify successful jail-
breaking prompts (Zou et al. 2023). In our attack scenario,
to ensure that the results are based on a sufficient number
of prompts to accurately assess the performance and im-
pact of our practical Emoji Attack, we exclude GCG, PAIR,
and GPTFuzz due to containing fewer than five successful
jailbreaking prompts against “gpt-3.5-turbo”. We incorpo-
rate our one-shot instruction (Figure 3) into these jailbreak-
ing prompts to generate harmful responses from “gpt-3.5-
turbo”, which are then directly evaluated by multiple Judge
LLMs.

We report the “unsafe” prediction ratio of different jail-
breaking attacks both with and without the incorporation
of our practical Emoji Attack in Table 2. We observe
that incorporating the practical Emoji Attack generally re-
sults in reduced “unsafe” prediction ratios across nearly all
Judge LLMs. For example, Deepinception’s ratio drops from
71.9% to 3.5% with ShieldLM. However, for Llama Guard 2
with Deepinception, as well as for GPT-3.5 and GPT-4 with
Jailbroken, the “unsafe” prediction ratio increases. This may
be caused by the one-shot example not sufficiently insert-
ing emojis into the target LLM’s responses. Carefully de-
signing more effective few-shot examples could enhance the
performance, which we leave as future work. Moreover, our
practical Emoji Attack demonstrates significant reductions
in the “unsafe” prediction ratios across various jailbreaking
attacks. This indicates that the Emoji Attack can be effec-
tively integrated with existing jailbreak techniques to evade
the detection of Judge LLMs. These results demonstrate the

effectiveness of our Emoji Attack in practical scenarios.

In addition, among the Judge LLMs excluding GPT-4,
WildGuard achieves the highest prediction ratio across dif-
ferent jailbreaking attacks. However, when faced with our
practical Emoji Attack, WildGuard’s overall “unsafe” pre-
diction ratio decreases by approximately 23%. Even for the
more powerful GPT-4, the ratio decreases by 6.6%. Among
these four jailbreaking attacks, CodeChameleon achieves
the lowest unsafe prediction ratio of 42.0%, indicating that
Judge LLMs, like target LLMs, are also influenced by the
code completion format. When combined with our Emoji
Attack, this ratio can be further reduced to 28.9%. It demon-
strates the scalability of the Emoji Attack across various re-
sponse formats.

Conclusion

In this paper, we studied the token segmentation bias in
Judge LLMs for safety risk detection. By exploiting this
bias, we can manipulate harmful responses to be misclas-
sified as “safe” by Judge LLMs. Moreover, exploiting this
bias, we propose the Emoji Attack, which places emojis
within tokens to drive their embeddings away from those
of the original tokens. Our experiments demonstrate that our
Emoji Attack significantly decreases the unsafe prediction
ratio, with ShieldLM’s ratio dropping to as low as 3.5%. Be-
sides, we extend our Emoji Attack to more practical scenar-
ios by providing instructions that guide target LLMs to gen-
erate responses with emojis. When combined with existing
jailbreaking prompts, our Emoji Attack allows their harmful
responses to bypass detection by Judge LLMs. The results
across 6 Judge LLMs demonstrate that our proposed Emoji
Attack significantly reduces unsafe prediction ratios by an
average of 15.8% across four jailbreaking attacks. Further-
more, as an evaluation strategy, our Emoji Attack reveals that
WildGuard and GPT-4 are more robust in safety risk detec-
tion compared to other Judge LLMs. =

References
Al@Meta. 2024. Llama 3 Model Card.

Andriushchenko, M.; Croce, F.; and Flammarion, N. 2024.
Jailbreaking leading safety-aligned llms with simple adap-
tive attacks. arXiv preprint arXiv:2404.02151.

Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners. Ad-
vances in neural information processing systems, 33: 1877—

1901.

Cai, Z.; Cao, M.; Chen, H.; Chen, K.; Chen, K.; Chen, X.;
Chen, X.; Chen, Z.; Chen, Z.; Chu, P.; Dong, X.; Duan, H.;
Fan, Q.; Fei, Z.; Gao, Y.; Ge, J.; Gu, C.; Gu, Y.; Gui, T.; Guo,
A.; Guo, Q.; He, C.; Hu, Y.; Huang, T.; Jiang, T.; Jiao, P.; Jin,
Z.;Lei,Z.;14,J.;Li, J.; Li, L.; Li, S.; Li, W.; Li, Y.; Liu, H.;
Liu, J.; Hong, J.; Liu, K.; Liu, K.; Liu, X.; Lv, C.; Lv, H;
Lv, K.; Ma, L.; Ma, R.; Ma, Z.; Ning, W.; Ouyang, L.; Qiu,
J.; Qu, Y.; Shang, F.; Shao, Y.; Song, D.; Song, Z.; Sui, Z.;
Sun, P.; Sun, Y.; Tang, H.; Wang, B.; Wang, G.; Wang, J.;
Wang, J.; Wang, R.; Wang, Y.; Wang, Z.; Wei, X.; Weng,
Q.; Wu, E; Xiong, Y.; Xu, C.; Xu, R.; Yan, H.; Yan, Y.;
Yang, X.; Ye, H.; Ying, H.; Yu, J.; Yu, J.; Zang, Y.; Zhang,
C.; Zhang, L.; Zhang, P.; Zhang, P.; Zhang, R.; Zhang, S.;
Zhang, S.; Zhang, W.; Zhang, W.; Zhang, X.; Zhang, X.;
Zhao, H.; Zhao, Q.; Zhao, X.; Zhou, F.; Zhou, Z.; Zhuo, J.;
Zou, Y.; Qiu, X.; Qiao, Y.; and Lin, D. 2024. InternLM2
Technical Report. arXiv:2403.17297.

Chao, P; Robey, A.; Dobriban, E.; Hassani, H.; Pap-
pas, G. J.; and Wong, E. 2023. Jailbreaking black box
large language models in twenty queries. arXiv preprint
arXiv:2310.08419.

Chen, G. H.; Chen, S.; Liu, Z.; Jiang, F.; and Wang, B. 2024.
Humans or llms as the judge? a study on judgement biases.
arXiv preprint arXiv:2402.10669.

Chiang, W.-L.; Li, Z.; Lin, Z.; Sheng, Y.; Wu, Z.; Zhang, H.;
Zheng, L.; Zhuang, S.; Zhuang, Y.; Gonzalez, J. E.; et al.
2023. Vicuna: An open-source chatbot impressing gpt-4
with 90%* chatgpt quality. See https://vicuna. Imsys. org
(accessed 14 April 2023),2(3): 6.

Claburn, T. 2024. Meta’s Al safety system defeated by the
space bar. https://www.theregister.com/2024/07/29/meta_ai_
safety/, Accessed on July 29, 2024.

Ding, P.; Kuang, J.; Ma, D.; Cao, X.; Xian, Y.; Chen, J.; and
Huang, S. 2023. A Wolf in Sheep’s Clothing: Generalized
Nested Jailbreak Prompts can Fool Large Language Models
Easily. arXiv preprint arXiv:2311.08268.

Ganguli, D.; Lovitt, L.; Kernion, J.; Askell, A.; Bai, Y.; Ka-
davath, S.; Mann, B.; Perez, E.; Schiefer, N.; Ndousse, K.;
et al. 2022. Red teaming language models to reduce harms:
Methods, scaling behaviors, and lessons learned. arXiv
preprint arXiv:2209.07858.

Geisler, S.; Wollschldger, T.; Abdalla, M.; Gasteiger, J.;
and Giinnemann, S. 2024. Attacking large language
models with projected gradient descent. arXiv preprint
arXiv:2402.09154.

Han, S.; Rao, K.; Ettinger, A.; Jiang, L.; Lin, B. Y.; Lambert,
N.; Choi, Y.; and Dziri, N. 2024. Wildguard: Open one-stop
moderation tools for safety risks, jailbreaks, and refusals of
1lms. arXiv preprint arXiv:2406.18495.

Hayase, J.; Borevkovic, E.; Carlini, N.; Tramer, F.; and Nasr,
M. 2024. Query-based adversarial prompt generation. arXiv
preprint arXiv:2402.12329.

Helbling, A.; Phute, M.; Hull, M.; and Chau, D. H. 2023.
Llm self defense: By self examination, llms know they are
being tricked. arXiv preprint arXiv:2308.07308.

Hu, K.; Yu, W.; Yao, T.; Li, X.; Liu, W.; Yu, L.; Li, Y.; Chen,
K.; Shen, Z.; and Fredrikson, M. 2024. Efficient LLM Jail-
break via Adaptive Dense-to-sparse Constrained Optimiza-
tion. arXiv preprint arXiv:2405.09113.

Inan, H.; Upasani, K.; Chi, J.; Rungta, R.; Iyer, K.; Mao,
Y.; Tontchev, M.; Hu, Q.; Fuller, B.; Testuggine, D.; et al.
2023. Llama guard: Llm-based input-output safeguard for
human-ai conversations. arXiv preprint arXiv:2312.06674.

Koo, R.; Lee, M.; Raheja, V.; Park, J. I; Kim, Z. M.;
and Kang, D. 2023. Benchmarking cognitive biases
in large language models as evaluators. arXiv preprint
arXiv:2309.17012.

Li, X.; Zhou, Z.; Zhu, J.; Yao, J.; Liu, T.; and Han, B. 2023.
Deepinception: Hypnotize large language model to be jail-
breaker. arXiv preprint arXiv:2311.03191.

Li, Y.; Liu, Y,; Li, Y,; Shi, L.; Deng, G.; Chen, S.; and
Wang, K. 2024. Lockpicking LLMs: A Logit-Based Jail-
break Using Token-level Manipulation. arXiv preprint
arXiv:2405.13068.

Liao, Z.; and Sun, H. 2024. Amplegcg: Learning a univer-
sal and transferable generative model of adversarial suffixes
for jailbreaking both open and closed llms. arXiv preprint
arXiv:2404.07921.

Liu, X.; Xu, N.; Chen, M.; and Xiao, C. 2023. Autodan:
Generating stealthy jailbreak prompts on aligned large lan-
guage models. arXiv preprint arXiv:2310.04451.

Llama-Team. 2024. Meta Llama Guard 2. https:
//github.com/meta-1lama/PurpleLlama/blob/main/Llama-
Guard2/MODEL_CARD.md.

Lv, H.; Wang, X.; Zhang, Y.; Huang, C.; Dou, S.; Ye, J.; Gui,
T.; Zhang, Q.; and Huang, X. 2024. Codechameleon: Per-
sonalized encryption framework for jailbreaking large lan-
guage models. arXiv preprint arXiv:2402.16717.

Mangaokar, N.; Hooda, A.; Choi, J.; Chandrashekaran, S.;
Fawaz, K.; Jha, S.; and Prakash, A. 2024. Prp: Propagat-
ing universal perturbations to attack large language model
guard-rails. arXiv preprint arXiv:2402.15911.

Mehrotra, A.; Zampetakis, M.; Kassianik, P.; Nelson, B.;
Anderson, H.; Singer, Y.; and Karbasi, A. 2023. Tree of
attacks: Jailbreaking black-box llms automatically. arXiv
preprint arXiv:2312.02119.

Ni, J.; Qu, C.; Lu, J.; Dai, Z.; Abrego, G. H.; Ma, J.; Zhao,
V.Y,; Luan, Y.; Hall, K. B.; Chang, M.-W; et al. 2021. Large

dual encoders are generalizable retrievers. arXiv preprint
arXiv:2112.07899.

Pangakis, N.; Wolken, S.; and Fasching, N. 2023. Au-
tomated annotation with generative ai requires validation.
arXiv preprint arXiv:2306.00176.

Qi, X.; Zeng, Y.; Xie, T.; Chen, P.-Y.; Jia, R.; Mittal, P.; and
Henderson, P. 2023. Fine-tuning aligned language models

compromises safety, even when users do not intend to! arXiv
preprint arXiv:2310.03693.

Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.

Wang, P,; Li, L.; Chen, L.; Cai, Z.; Zhu, D.; Lin, B.; Cao, Y.;
Liu, Q.; Liu, T.; and Sui, Z. 2023. Large language models
are not fair evaluators. arXiv preprint arXiv:2305.17926.

Wei, A.; Haghtalab, N.; and Steinhardt, J. 2024. Jailbroken:
How does 1lm safety training fail? Advances in Neural In-
formation Processing Systems, 36.

Yao, S.; Yu, D.; Zhao, J.; Shafran, 1.; Griffiths, T.; Cao,
Y.; and Narasimhan, K. 2024. Tree of thoughts: Deliber-
ate problem solving with large language models. Advances
in Neural Information Processing Systems, 36.

Yu, J.; Lin, X.; and Xing, X. 2023. Gptfuzzer: Red team-
ing large language models with auto-generated jailbreak
prompts. arXiv preprint arXiv:2309.10253.

Yuan, Y.; Jiao, W.; Wang, W.; Huang, J.-t.; He, P.; Shi, S.;
and Tu, Z. 2023. Gpt-4 is too smart to be safe: Stealthy chat
with 1lms via cipher. arXiv preprint arXiv:2308.06463.
Zeng, Z.; Yu, 1.; Gao, T.; Meng, Y.; Goyal, T.; and Chen,
D. 2023. Evaluating large language models at evaluating
instruction following. arXiv preprint arXiv:2310.07641.

Zhang, Y.; and Wei, Z. 2024. Boosting jailbreak attack with
momentum. arXiv preprint arXiv:2405.01229.

Zhang, Z.; Lu, Y.; Ma, J.; Zhang, D.; Li, R.; Ke, P.; Sun, H.;
Sha, L.; Sui, Z.; Wang, H.; et al. 2024. Shieldlm: Empow-
ering llms as aligned, customizable and explainable safety
detectors. arXiv preprint arXiv:2402.16444.

Zheng, L.; Chiang, W.-L.; Sheng, Y.; Zhuang, S.; Wu, Z.;
Zhuang, Y.; Lin, Z.; Li, Z.; Li, D.; Xing, E.; et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot arena.
Advances in Neural Information Processing Systems, 36.
Zhou, W.; Wang, X.; Xiong, L.; Xia, H.; Gu, Y.; Chai, M.;
Zhu, F.; Huang, C.; Dou, S.; Xi, Z.; Zheng, R.; Gao, S.;
Zou, Y.; Yan, H.; Le, Y.; Wang, R.; Li, L.; Shao, J.; Gui,
T.; Zhang, Q.; and Huang, X. 2024. EasyJailbreak: A Uni-
fied Framework for Jailbreaking Large Language Models.
arXiv:2403.12171.

Zou, A.; Wang, Z.; Carlini, N.; Nasr, M.; Kolter, J. Z.; and
Fredrikson, M. 2023. Universal and transferable adver-
sarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043.

